Abstract
A nanosecond pulsed laser direct-write and doping (LDWD) technique is used for the fabrication of carbon-rich silicon carbide nanoribbons heterostructure in a single crystal 4H–SiC wafer. Characterization by high-resolution transmission electron microscope and selected area electron diffraction pattern revealed the presence of nanosize crystalline ribbons with hexagonal graphite structure in the heat-affected zone below the decomposition temperature isotherm in the SiC epilayer. The nanoribbons exist in three layers each being approximately 50–60 nm thick, containing 15–17 individual sheets. The layers are self-aligned on the (0001) plane of the SiC epilayer with their c axis at 87° to the incident laser beam. The LDWD technique permits synthesis of heterostructured nanoribbons in a single step without additional material or catalyst, and effectively eliminates the need for nanostructure handling and transferring processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.