Abstract

Ultra-thin polycaprolactone (PCL) produced by bi-axial stretching was previously shown to have significant advantage for membrane tissue engineering. However, the permeability of the membrane needs to be enhanced. In this study, ablation experiments using femtosecond laser and excimer laser were carried out to modify the PCL surface. The use of the femtosecond laser produces neat drilled-through holes while the excimer laser is employed to produce blind-holes on the membrane. The modified surface of the membrane was studied and analyzed for different laser parameters (such as pulse energy and pulse repetition rate and characterized using several techniques that include optical microscopy, scanning electron microscopy and water contact angle measurements). Results showed that the morphological surface changes with different laser parameters, and the water contact angle decreases as the surface of the membrane is modified. The decrease in water contact angle suggests that surface of the membrane had become more hydrophilic than the non-laser treated membrane. The present study demonstrated that laser surface modification on the PCL can be achieved with high degree of success and precision. This paved the way for further enhancement in membrane tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call