Abstract

Abstract: This chapter investigates the feasibility of applying a laser surface alloying technique to improve the corrosion resistance and biocompatibility of nickel–titanium (NiTi) in simulated body fluid. It summarizes the result of laser surface modification of NiTi with Mo using a CO2 laser into three sections. The microstructure, chemical composition, surface morphology, hardness, corrosion resistance, nickel release rate, wettability, bone-like apatite formation and cell adhesion behavior of the surface alloyed layer were analyzed using scanning electron microscopy (SEM), energy dispersive analysis by X-rays (EDAX), X-ray diffractometry (XRD), Vicker’s microhardness, polarization tests, atomic absorption spectrometry, sessile drop technique, immersion test and cell adhesion analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call