Abstract

The AISI 420 martensitic stainless steel was surface-hardened by a pulsed Nd:YAG laser. The influences of process parameters (laser pulse energy, duration time and travel speed) on the depth and hardness of laser treated area and its corrosion behavior were Investigated. In the optimum process parameters, maximum hardness (490 VHN) in the laser surface treated area was achieved. The pitting corrosion behavior was studied by potentiodynamic polarization technique in 3.5% NaCl solution at 25 °C. Metallographical and electrochemical corrosion studies illustrated beneficial effects of laser surface hardening by refining the microstructure and enhancing the pitting corrosion resistance of the martensitic stainless steel. The pitting corrosion resistance of laser surface treated samples in 3.5% NaCl solution depends on the overlap ratio clearly. The pitting potential ( E pp ) decreased significantly by increasing the ratio of pulse overlapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call