Abstract

Abstract The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The newly developed hybrid welding process allows the welding of plates with a thickness larger than 20 mm in a single pass and the welding of thicker plates with the double-sided single pass technique. In this special hybrid process, the use of CO 2 -lasers causes problems when forward sliding flux of slag meets the laser beam path and forms an uncontrollable plasma plume in the beam path. This plasma then shields the work piece from the laser power and thus provokes the collapse of the laser keyhole and leads to process instability. The substitution of the CO 2 -laser with a modern solid-state laser significantly improves the performance and the stability of the hybrid process. This contribution will demonstrate the latest results and improvements by means of welding results gained with steel plates with a thickness of up to 40mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.