Abstract

Noncontact sensing methods for measuring vital signs have recently gained interest, particularly for long-term monitoring. This study introduces a new method for measuring respiratory rate remotely. The proposed method is based on the reflection of a laser beam off a striped card attached to a moving platform simulating chest wall displacements. A wide range of frequencies (n = 35) from 0.06 to 2.2 Hz corresponding to both normal and pathological human respiratory rates were simulated using a moving mechanical platform. Reflected spectra (n = 105) were collected by a spectrometer in a dynamic mode. Fourier analysis was performed to retrieve the breathing frequency. The results show a striking agreement between measurements and reference frequencies. The results also show that low frequencies corresponding to respiratory rates can be detected with high accuracy (uncertainty is well below 5%). A validation test of the measuring method on a human subject demonstrated a great potential for remote respiration rate monitoring of adults and neonates in a clinical environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call