Abstract

A comparative study between cobalt ferrite films deposited by pulsed laser deposition as a function of the laser sources, 355 nm (Nd:YAG) and 248 nm (KrF excimer), on amorphous quartz (AQ) and -oriented silicon wafer (SW) at different temperatures (650–800 ∘C) is presented. Also, a quantitative estimation of the preferential crystalline growth orientation as laser source function was made by means of Lotgering factor and Harris texture coefficient, which were obtained from XRD patterns. The inversion degree in spinel-type structure for cobalt ferrite films was calculated through a deconvolution in Raman spectra, where the band A1g vibrating modes in tetrahedral sites were associated with Fe and Co sites (687 and 611 cm−1, respectively). Additionally, saturation magnetization was also calculated from the inversion degree obtained from deconvolution of the Raman spectra in CoFe2O4 films, being compared with experimental results, which is in a good agreement with cobalt ferrite bulk, and we also correlated the preferential growth and the particle size with increment of the coercive field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call