Abstract

Laser short-pulse heating of solid surfaces results in non-equilibrium energy transport in the region irradiated by the laser beam. Owing to the large temperature gradients in the lattice subsystem, high stress levels develop in the surface region of the substrate material. In the present study, temperature and stress fields in the substrate material are presented for the case of the laser short-pulse heating of gold. Electron kinetic theory and a two-equation heating model are introduced to account for non-equilibrium energy transport during the laser heating pulse. Laser pulses exponentially decaying with time are accommodated in the simulations. It is found that lattice site temperature gradients attain high values inspite of the low magnitude of the lattice site temperature. This, in turn, results in high stress levels in the surface region of the substrate material. Thermal stress is compressive owing to high thermal strain development and low displacement of the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.