Abstract
The present work has important implications for the use of graphene as reinforcement and interlocking the grains in nanocomposites. In order to achieve this, low energy laser shock peening (LSP) assessed on graphene (0.4 wt %)-AA 7075 nanocomposites fabricated through powder metallurgy (PM) technique and hot extrusion (28:1 extrusion ratio). As a consequence, substantial improvement in microstructure observed for the nanocomposites up to 400 µm depth. The added graphene serves the pinning effect and blocks the grain growth in the nanocomposites. LSP contribute the additional grain refinement effectively along interlocking the grains by graphene called pinned dislocation core in the nanocomposites leading to large deformation texture strengthening. Addition of graphene found to have improved in the ultimate tensile strength (UTS) by 42.93%, LSP has contributed 10.66%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.