Abstract

We report on a comprehensive study of picosecond laser scribing of gallium doped zinc oxide (GZO) thin films deposited on glass substrates using 355 nm, 532 nm and 1064 nm radiation, respectively. In this study, we investigated the influence of front side and rear side irradiation and determined single pulse ablation thresholds for all three wavelengths. Good ablation quality with full electrical isolation, steep groove walls and a smooth groove bottom was achieved by 355 nm rear side processing with a scanning speed of 224 mm/s. Ridges at the groove rims were found to be between 15 nm and 45 nm high. At similar scanning speed, laser scribing using 532 nm and 1064 nm radiation resulted in a lower ablation quality due to a higher roughness of the groove bottoms or higher ridges at the groove rims.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.