Abstract

We present and model a dark-field illumination scheme for coherent anti-Stokes Raman scattering (DF-CARS) that highlights the interfaces of an object with chemical sensitivity. The proposed DF-CARS scheme uses dedicated arrangements of the pump kp1, Stokes kS and probe kp2 beams' k-wave-vectors to address the sample's interfaces along the x, y or z axis. The arrangements of the incident k-wave-vectors are derived from the Ewald sphere representation of the outgoing anti-Stokes radiation and the effective CARS excitation wave-vector keff = kp1 + kp2 - kS under the intention to avoid probing the object frequency K(0,0,0), i.e., the contribution of a homogeneous sample (dark-field configuration). We suggest a possible experimental realization using simple masks placed in the back pupil of the excitation microscope objective lens. Applying a full vectorial model, the proposed experimental implementation is numerically investigated on grounds of the Debye-Wolff integral and dynadic Green function to confirm the predicted chemical interface contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.