Abstract

Optical spectroscopy constitutes the historical path to accumulate basic knowledge on the atom and its structure. Former work based on fluorescence and resonance ionization spectroscopy enabled identifying optical spectral lines up to element 102, nobelium. The new challenges faced in this research field are the refractory nature of the heavier elements and the decreasing production yields. A new concept of ion-mobility-assisted laser spectroscopy is proposed to overcome the sensitivity limits of atomic structure investigations persisting in the region of the superheavy elements. The concept offers capabilities of both broadband-level searches and high-resolution hyperfine spectroscopy of synthetic elements beyond nobelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.