Abstract
Investigation into the laser remelting of zirconia surfaces in a nitrogen gas environment is carried out. The thermal stress fields during and after the laser treatment process are predicted numerically. The microstructural and morphological changes in the laser-treated region are examined using optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The residual stresses are determined using the XRD technique. It is found that the residual stress predicted remains high along a depth of 50 µm below the laser-treated surface. The predictions of residual stress agree well with the XRD data. A fine dendritic structure is formed in the vicinity of the surface, which contributes to the surface hardness. In addition, transformation of t-ZrO2 to c-ZrO2 at high temperature is accompanied by the formation of ZrN in the surface vicinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.