Abstract
Silicon wafers are the most widely used semiconductor substrates. It has been considered that silicon wafers after chemomechanical polishing (CMP) have no subsurface defects. However, in fact, defects such as dislocation and latent microcracks will remain in the wafers if CMP is performed under unsuitable conditions. In this study, we confirmed the existence of subsurface damages at a depth of submicron level in a silicon wafer after CMP, then used a nanosecond pulsed Nd:YAG laser to repair the subsurface damages. It was found that subsurface defects were recovered to a single crystalline structure by laser irradiation without changing the surface topography. The phase transformation of silicon before and after laser irradiation was confirmed by laser Raman spectroscopy and chemical etching using saturated aqueous solution of Ca(OH)2. The findings from this study contributes to improve the quality of silicon wafers for high-performance semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.