Abstract

Advantages and limitations of laser Raman spectroscopy (LRS) as an in situ vibrational spectroscopy for the study of catalytic materials and surfaces under working conditions are discussed. Measurements can be carried out at temperatures as high as 1200 K in controlled atmospheres. Modern instrumentation permits time resolutions in the sub‐second regime for materials with high Raman cross sections. Transient studies are thus possible. Several examples are presented of in situ LRS studies including the phase analysis of bismuth molybdate and VPO oxidation catalysts, synergy effects and oxygen exchange in Sb2O3/MoO3 oxide mixtures, intermediates in oxidative coupling of methane, NO decomposition on Ba/MgO catalysts, and transient SERS studies of partial oxidation of methanol on Ag single crystal surfaces and of the reduction of oxide overlayers on electrodeposited Rh layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.