Abstract

Large and abrupt changes are observed at 38 degrees C in the 1100 cm(-1) region of the Raman spectrum of aqueous dipalmitoyl lecithin multilayers. They correspond to conformational changes due to the melting of the paraffin side chains. The addition of cholesterol to the multilayers broadens but does not abolish these changes. It is suggested that the addition of cholesterol decreases the interactions between adjacent paraffin side chains of lecithin, causing a change from a cooperative to a noncooperative gel-liquid crystal transition. Removal of water from dipalmitoyl lecithin also results in a noncooperative transition strikingly similar to that caused by addition of cholesterol. Raman spectroscopy thus provides a new and sensitive probe for analyzing the structures of membranes and their constituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.