Abstract

This work reviews a series of investigations of different plasma plumes using single- and two-color laser systems that emit femtosecond pulses with a 10-Hz repetition rate. Results of investigation of the resonant enhancement of harmonics in tin plasma with the use of two types of pumps are analyzed, and it is shown that the tuning of the wavelengths of harmonics to ion-resonance levels plays an important role in increasing the conversion efficiency to high-order harmonics of the radiation to be converted. Investigations of different carbon-containing plasma media (carbon nanotubes, graphite, carbon aerogel, etc.) exhibit attractive properties of the nonlinear medium of this type for efficient generation of high-order harmonics. The results of the first experiments on the use of nanoparticles produced directly in the course of laser ablation of metals for increasing the efficiency of harmonics generated in this cluster-containing medium are analyzed. It is shown that new approaches realized in these investigations give hope that the nonlinear optical response of plasma media in the far-ultraviolet range can be further increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.