Abstract

We have realized and studied a rubidium atomic frequency standard based on a paraffin-coated cell, exhibiting a short-term frequency stability <3 × 10−12 τ−1/2 between τ = 1 and 100 s. Characterization of the wall-coating is performed by measuring the T1 and T2 relaxation times. Perturbations of the medium- to long-term clock stability, due to variations in the laser-intensity, laser frequency, the microwave power shift, and the shifts due to temperature variations are measured and analyzed. A method for reducing the intensity light-shift by detuning the laser frequency and the resulting improvement in clock stability is demonstrated. This work is of relevance for further improvements on Rb cell standards using anti-relaxation wall-coating technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call