Abstract

Determining optimal temporal pulse shapes is an essential aspect for controlling the nature and the energetic characteristics of the ablation products following laser irradiation of materials on ultra-fast scales. In this respect, adaptive feedback loops based on temporal pulse manipulation have been inserted into a hydrodynamic code. The procedure enables us to reach the theoretical maximal temperature at a certain energy input. Several regimes have been considered with fluences ranging from the ablation threshold (F th=0.34 J/cm2) up to 10 J/cm2, proposing an optimal coupling for laser–solid and laser–plasma interactions in these fluence regimes. We determine shapes of optimal pulses on ultra-short and short scales (up to 42 ps) and forecast optimized interaction scenarios with fundamental control factors difficult to access experimentally. Simulations performed on aluminum reveal that ultra-short pulses are the natural better solution for localizing energy in space and time for F∼F th. For higher fluences, pulses spread over tens of picoseconds and ended by a final peak enable a better impulsive coupling with the nascent plasma, optimizing its maximal temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.