Abstract
Abstract. Full-waveform laser scanning extends the information content of "conventional" laser scanning by storing the temporal profile of both the emitted laser pulse and its echoes. This allows for calculating radiometric quantities in addition to the geometric data. This radio- metric information needs to be calibrated in order to enable comparison among flight strips of the same laser scanner campaign and/or different campaigns. Radiometric calibration is aimed at the determination of a calibration constant which contains the parameters of the emitted laser pulse (besides others). All of these parameters are normally treated as constants. In this paper, the sensitivity of the calibration constant to variations of the emitted laser pulse is analysed theoretically by deriving it according to the error propagation law, followed by an empirical analysis carried out on the example of two airborne full-waveform laser scanning campaigns. Both were operated with the same instrument and over the same area on two different dates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.