Abstract
A combination of KBr modification and laser processing is utilized to prepare SnO2 films for rigid and flexible perovskite solar cells (PSCs). The KBr modification effectively passivates the defects at the interface between SnO2 and perovskite as well as grain boundaries of the perovskite film. A power conversion efficiency (PCE) of 20.14% is achieved with the KBr‐modified SnO2 for the rigid PSCs fabricated under a relative humidity of around 65–75%, compared to the pristine SnO2 films with a PCE of 18.66%. Then, a picosecond ultraviolet laser is employed to process KBr‐modified SnO2 films on flexible substrates with a rapid scanning rate of 100 mm s−1. The laser process improves the PCEs and durability of the PSCs. The flexible PSCs fabricated by the laser remain over 80% of their initial PCEs after 1000 bending cycles, higher than those fabricated by the hot plate showing 40% of their initial PCEs after the same bending cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.