Abstract
The surfaces of nodular and gray cast iron specimens have been modified by CO2 laser processing for enhanced hardness and erosion resistance. Control of the near-surface microstructure was achieved primarily by controlling resolidification of the laser melted layer through variations in laser beam/target interaction time and beam power density. Typical interaction times and power densities used in this study were 5 msec and 500 kW/cm2. Analysis of the laser melted surface showed a dramatic increase in hardness and a greatly refined microstructure. Depending on the processing parameters, two basic kinds of microstructure can be produced in the laser hardened layer—a feathery microstructure with a very high hardness (up to 1245 HV) and a dendritic microstructure with a metastable, fully austenitic matrix and a lower hardness (600 to 800 HV). Erosion testing was done in a rotating paddle device using slurries of SiO2 or SiC in water. Weight loss and crater profile measurements were used to evaluate the erosion characteristics of the various microstructures. Both ductile and gray cast iron showed marked improvement in erosion resistance after laser processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.