Abstract

The use of lasers in the processing of solar cell structures has been known for many years both for c-Si and thin-film solar technologies. The maturity of the laser technology, the increase in scale of solar module production and the pressures to drive down cost of ownership and increase cell efficiencies have all contributed to the adoption of laser processes in industrial manufacturing. Today laser systems are the tool of choice in thin-film module manufacturing both for scribing the cell interconnects and for the module edge isolation. For c-Si solar cells the primary laser application today is edge isolation and this is well-established in industrial production of most types of waferbased cells. Other laser processes are used in the production of advanced high-efficiency c-Si cell designs such as laser grooved buried contacts, emitter wrap-through or metal wrap-through interconnects, selective emitters and laser fired contacts. In the mission of the solar industry to reduce the cost of electricity generation there are increasing opportunities for laser processing to contribute to the goal of low cost of ownership in industrial manufacturing through improved module efficiencies, higher throughput and reduced process costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call