Abstract

A direct laser deposition processing method was applied to construct compositional and microstructural libraries of AlxCoCrFeNi in an efficient and high-throughput manner. Among the compositions (x = 0.51–1.25) and quench rates (26–6400 K/s) studied, most of the laser deposited alloys exhibit a cellular microstructure, similar to the cast materials. The microstructural feature sizes were found to follow a power law relationship with the quench rate. The dependence of the microhardness on microstructural length scale was also investigated and observed to follow a Hall-Petch relationship. This study indicates that laser processing is an effective method for rapidly and efficiently evaluating multiprincipal element alloys and their microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.