Abstract

Subwavelength nanostructures made of high-index low-loss materials have revolutionized the fields of linear and nonlinear nanophotonics, stimulating growing demands for efficient and inexpensive fabrication technologies. Here, we demonstrate high-precision and reproducible printing of hemispherical Si nanoparticles (NPs) via controllable dewetting of glass-supported $\alpha$-Si films driven by a single femtosecond laser pulse. The diameter of the formed nanocrystalline NPs can be fully controlled by initial $\alpha$-Si film thickness as well as lateral size of the laser spot and can be predicted by a simple empirical model based on conservation of energy and mass. A resonant optical response associated with Mie-type resonances supported by hemispherical NPs was confirmed by combining numerical modeling with optical microspectroscopy. Inexpensive and high-performing direct laser printing of nanocrystalline Si Mie resonators with a user-defined arrangement opens a pathway for various applications in optical sensing and nonlinear nanophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.