Abstract

Laser powder microdeposition (LPMD) uses a finely focused laser beam to generate a minute meltpool on the surface of a metallic substrate into which metallic powder is blown. The laser/powder interaction zone is scanned over the substrate and molten material re-solidifies leaving microscale tracks of deposited material. The ability to deposit material on this scale opens up the possibilities of the alteration of the surface properties of small metallic components, the repair of fine damage such as fractures and wear and the fabrication of small components that require high dimensional accuracy such as dental and maxillofacial implants. In this paper, a novel Laser powder microdeposition system is described whereby the powder is fed via a fine capillary. The system was used to deposit single tracks, thin walls and a solid part of grade 2 commercially pure (CP2) Titanium, a material suitable for the fabrication of dental implants. The geometry of both single tracks and thin walls of CP2 Titanium deposited by LPMD can be controlled by variation of laser power and scanning speed. The process can be used to produce porosity free thin wall structures with widths lower than 450 μm and with a surface roughness lower than 20 μm (Ra).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call