Abstract

In this study, novel honeycomb structures with twisted feature were designed and manufactured by laser powder bed fusion (LPBF). The manufacturability, microstructure evolution of LPBFed honeycomb components with twisted feature were studied. The influence of twist angle on the compressive behavior of components was experimentally investigated and the underlying mechanism was revealed using FE simulation. Results revealed that the material relative density of LPBFed components was reduced with the increase of twist angle, caused by the enlarging overhanging area. Different cooling rate of melt pool at different parts along the building direction resulted in different microstructures. The twist angle significantly affected the compressive behaviors of honeycomb structures. When the cell number along each side was 3, the honeycomb structure with 30° twist angle exhibited the most uniform stress distribution under compression, leading to the highest specific compressive strength and energy absorption ability. The influence of cell number and wall thickness on compressive properties of honeycomb structures with 30° twist angle were investigated through finite element simulation, and results revealed that the structure with 0.75 mm wall thickness and 3 unit cells along each side showed the highest specific energy absorption ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call