Abstract

Abstract Modern turbomachinery demands simplified components and compact shaft support systems. This study introduces novel hydrostatic journal bearings incorporating multiple tilting pads and fluid feeding features, which are manufactured with Direct Metal Laser Melting (DMLM) technology, an advanced laser powder bed fusion manufacturing process. Two test bearings, fabricated by fusing extremely thin layers of Inconel 718 powder, incorporate fluid external feed pressurization features without the need for recesses. One test bearing features unique internal feeding hole configurations, which combine multiple holes with an angled injection feature, while the other test bearing includes distinctive porous layers on the bearing pad surfaces. This paper provides a comprehensive overview of the design, fabrication process, and static load characteristic measurements of these innovative bearings. A simple static load test rig is used to measure the flow rate, temperature, and stiffnesses of the test bearings while supplying compressed air, water, and liquid nitrogen with increasing static loads. The performance of these bearings is compared with counterparts produced using computer numerical control (CNC) machining, a conventional subtractive manufacturing process. In general, the bearings lubricated with liquid nitrogen exhibit a higher load capacity compared to those lubricated with air. This study confirms the static load performance of metal three-dimensional printed hydrostatic journal bearings, marking a significant advancement in the application of additive manufacturing for turbomachinery bearings. The findings offer valuable insights into the potential of additive manufacturing in producing bearings for extreme operating conditions and various lubricants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.