Abstract

ABSTRACT Additive manufacturing (AM) technologies for technical ceramics are rapidly emerging. Many of these processes rely on a polymer binder-assisted printing approach followed by de-binding and furnace sintering for densification. However, the required de-binding step is long and sensitive, and the presence of densification shrinkage requires a compensation in design. This study explores laser powder bed fusion (LPBF) as an additive manufacturing method for full net-shaping of reaction bonded silicon carbide (RBSC) and reaction bonded boron carbide (RBBC). During LPBF, silicon is used as a structural binder instead of traditional sacrificial polymer binders. By combining this with liquid silicon infiltration (LSI) as a densification method, long de-binding times and densification shrinkage are avoided. This leads to a net-shaping, additive manufacturing process for RBSC and RBBC ceramics with high Young’s modulus (285 and 308 GPa respectively), flexural strength (220 and 168 MPa) and hardness (2045 and 2242 HV).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call