Abstract

This paper presents the effect of the laser-polishing process applied to a milled and EDMed surface of DIN 1.2379 tool steel commonly used in the die and mold industry. The martensitic structure of this type of steel (showing hardness values up to 62 HRC) makes the polishing operation extremely difficult. At present polishing must be carried out manually by skilled workers, and this entails an expensive and prolonged process. An alternative to automation of the polishing process is a laser-polishing process, based on tightly controlled melting of a micro-layer of surface material which flows into and fills topographic valleys for a smoothed surface topography. Thus the main process parameters have been identified and optimized using two different types of industrial laser: a CO 2 laser and a high-power diode laser (HPDL), obtaining up to 90% roughness reduction with mean roughness values (Ra) below 0.5 μm. Moreover, in order to secure a complete study of the process in accordance with the energy radiated, three-dimensional topographic surfaces were measured and a metallurgical study performed to determine the effect of laser radiation on the structure of the material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.