Abstract

The issue of laser plasma instabilities (LPIs) including stimulated Raman scattering, stimulated Brillouin scattering and so on is one of the most fascinating subjects in laser plasma physics. In particular, LPIs may cause significant laser energy loss and produce hot electrons to preheat fusion targets, which affect target compression and fusion energy gain in laser-driven inertial confinement fusion. Recent experiments carried out on the National Ignition Facility, the largest laser facility in the world for laser fusion, indicate that the understanding and the control of LPIs are essential to the realization of laser fusion. In this paper, we present a review on recent studies of LPIs. Firstly, we retrospect the classical theoretical model of LPIs, which offers a good estimation of growth rate in the linear development stage. Then, we discuss some progresses on the understanding of LPIs in more complex and real scenarios, such as LPI development in the nonlinear regions, cascaded LPIs, multi-beam LPIs, and nonlinear couplings between LPIs. Following the exploration of LPI physics, we emphasize on the strategies for the control of LPIs, including beam smoothing techniques, temporal profile shaping, broadband laser, laser polarization rotation, external magnetic field and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.