Abstract
Laser-plasma accelerators deliver high-charge quasi-monoenergetic electron beams with properties of interest for many applications. Their angular divergence, limited to a few mrad, permits one to generate a small gamma ray source for dense matter radiography, whereas their duration (few tens of fs) permits studies of major importance in the context of fast chemistry for example. In addition, injecting these electron beams into a longer plasma wave structure will extend their energy to the GeV range. A GeV laser-based accelerator scheme is presented; it consists of the acceleration of this electron beam into relativistic plasma waves driven by a laser. This compact approach (centimetres scale for the plasma, and tens of meters for the whole facility) will allow a miniaturization and cost reduction of future accelerators and derived X-ray free electron laser (XFEL) sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.