Abstract

The quantum electrodynamical vacuum polarization effects arising in the collision of a high-energy proton beam and a strong, linearly polarized laser field are investigated. The probability that laser photons merge into one photon by interacting with the proton`s electromagnetic field is calculated taking into account the laser field exactly. Asymptotics of the probability are then derived according to different experimental setups suitable for detecting perturbative and nonperturbative vacuum polarization effects. The experimentally most feasible setup involves the use of a strong optical laser field. It is shown that in this case measurements of the polarization of the outgoing photon and and of its angular distribution provide promising tools to detect these effects for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.