Abstract

The spectral and kinetic characteristics of short-lived intermediates formed during the photolysis of aqueous and alkaline (0.1 mol l−1 NaOH) solutions of fulvic acids (FA) were studied by the nanosecond laser photolysis technique. Laser photolysis of FA at 337 nm leads to the formation of short-lived triplet states of FA (3FA) with a quantum yield of about 1% and different relatively long-lived intermediates (with decay rate constants in deoxygenated solutions of 1.8 × 103–2.1 × 105 and 80–160 s−1, respectively), which are characterized by absorption spectra with maximums at λ ≤ 400 nm. 3FA are quenched by atmospheric oxygen with rate constants of 5.4 × 108–1.1 × 109 l mol−1 s−1. Introduction of phenols into the solutions at concentrations up to 0.1 mol l−1 has no appreciable effect on the decay kinetics of the detected intermediate products of FA photolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.