Abstract
Room temperature vibrational deactivation rate constants are reported for methyl radicals with antisymmetric stretch excitation, CH3(nu3) + M CH3 + M, where M = He, Ar, N2, CO, SF6, (CH3)2CO. Excimer laser photolysis of acetone at 193 nm is used to populate CH3(nu3), and time-resolved infrared emission from the CH stretch is used to follow the deactivation kinetics. The rate constants obtained are (+/-2sigma) (2.6 +/- 0.5) x 10 T (He, (6.8 +/- 0.7) x 10 T (Ar), (6.1 +/- 0.6) x 10 T (N2), (3.6 +/- 0.7) x 10 T (CO), (6.9 +/- 0.7) x 10 T (SF6), and (8.1 +/- 0.9) x 10 S (CH3COCH3) in units of cmT molecule s . The deactivation probability is not controlled by long-range forces due to the lone electron on the radical, but rather by the probabilities for intramode vibrational energy flow in CH3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.