Abstract

Selective control of decoherence is demonstrated for a multilevel system by generalizing the instantaneous phase of any chirped pulse as individual terms of a Taylor series expansion. In the case of a simple two-level system, all odd terms in the series lead to population inversion, while the even terms lead to self-induced transparency. These results also hold for multiphoton transitions that do not have any lower-order photon resonance or any intermediate virtual state dynamics within the laser pulse width. Such results form the basis of a robustly implementable CNOT gate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.