Abstract

A laser patterning method was investigated as a fabrication method for integrated-type amorphous-silicon (a-Si) solar cell submodules. A three-dimensional thermal analysis of a multilayer structure was performed to determine the selective scribing conditions for each layer of an a-Si solar cell. The optimum laser power densities calculated from a three-dimensional thermal analysis were confirmed by the experiments. It was found that not only transparent conductive oxide and a-Si films, but also the metal electrodes of the integrated-type a-Si solar cell submodule were selectively scribed. The total output power of an a-Si solar cell submodule patterned by optimum laser-power densities was 9% higher than that achieved by a conventional patterning method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call