Abstract

An organic laser device is constructed as distributed feedback (DFB) type using an anisotropic single crystal of an organic semiconductor oligomer BP3T. The DFB structure is formed on top of the crystal via an interference exposure technique of a positive type photoresist. In the DFB structure, both the phase matching condition and waveguide condition must be fulfilled. Under these conditions, the effective refractive indices can be precisely predicted for a BP3T crystal, and they vary depending upon the crystal thickness. As a result, the device produces a single-mode laser oscillation at an intended wavelength (typically ∼569 nm). The present study enables us to design a down-to-earth laser device based on an anisotropic organic semiconductor crystal toward practical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.