Abstract

The complex, nonequilibrium physical, chemical, and metallurgical nature of additive manufacturing (AM) tends to lead to uncontrollable and unpredictable material and structural properties. Therefore, real-time monitoring of AM is of great significance. However, current AM relies on separate postprocess analyses, which are usually destructive, costly, and time-consuming. In this study, we investigated a laser opto-ultrasonic dual (LOUD) detection approach for simultaneous and real-time detection of elemental compositions, structural defects, and residual stress in aluminium (Al) alloy components during wire + arc additive manufacturing (WAAM) processes. In this approach, a pulsed-laser beam was used to excite the surfaces of Al alloy samples to generate ultrasound and optical spectra. As a result, the compositional information can be obtained from the optical spectra, while the structural defects and residual stress distributions can be extracted from the ultrasonic signals. The silicon (Si) and copper (Cu) compositions obtained from optical spectral analyses are consistent with those obtained from the electron-probe microanalyses (EPMA). The 1 mm blowhole and the residual stress distribution of the sample were detected by the ultrasonic signals in the LOUD detection, which shows consistency with the conventional ultrasonic testing (UT). Both results indicate that the LOUD detection holds the promising of becoming an effective testing method for AM processes to ensure quality control and process feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.