Abstract

First-order phase transitions in metal induced by nanosecond laser pulse are studied here. The metal surface is irradiated through a layer of transparent dielectric—an optical glass. Such confinement considerably increases the efficiency of pressure generation at the metal surface. This technique allows to obtain near-critical states of metals—with temperatures ∼104 K and pressures ∼104 atm with table-top equipment. At the same time the glass prevents the ablation plume formation—so the surface temperature can be measured using thermal radiation data. An experimental setup for simultaneous measurements of pressure, temperature and reflectivity was assembled based on the elaborated method of experimental research. The processes of melting of lead and boiling of mercury were studied. The onset of the phase transition process led to a considerable tightening of the pressure pulse. A substantial drop of surface reflectivity due to increase of temperature and decrease of density was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.