Abstract

AbstractWe report for the first time laser-modified chemical beam epitaxy (CBE) of InGaAs/GaAs multiple quantum well (MQW) structures using trimethylindium (TMIn), triethylgallium (TEGa), and tris-dimethylaminoarsenic (TDMAAs), a safer alternative to arsine. X-ray rocking curve (XRC) and low-temperature photoluminescence (PL) measurements were used to characterize the pseudomorphic strained quantum well structures. As determined by the X-ray simulation, laser irradiation during the InGaAs well growth was found to enhance the InGaAs growth rate and reduce the indium concentration in the substrate temperature range studied, 440-S00°C, where good interfaces can be achieved. We attribute these changes to laser-enhanced decomposition of TEGa and laser-enhanced desorption of TDMAAs. With laser irradiation, lateral variation of PL exciton peaks was observed, and the PL peaks became narrower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.