Abstract

Tapered and micro-structured optical fibers (TFs) recently emerged as a versatile tool to obtain dynamically addressable light delivery for optogenetic control of neural activity in the mammalian brain. Small apertures along a metal-coated and low-angle taper allow for controlling light delivery sites in the neural tissue by acting on the coupling angle of the light launched into the fiber. However, their realization is typically based on focused ion beam (FIB) milling, a high-resolution but time-consuming technique. In this work we describe a laser micromachining approach to pattern TFs edge in a faster, more versatile and cost-effective fashion. A four-axis piezoelectric stage is implemented to move and rotate the fiber during processing to realize micropatterns all-around the taper, enabling for complex light emission geometries with TFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.