Abstract

The water jet guided laser technology (laser Microjet®) has been developed since 10 years now and is used for several applications in the semiconductor industry. In this unique laser cutting technique, a thin stable water jet is used as a waveguide for a high-power Nd:YAG laser, that may be frequency doubled or tripled. This presentation gives an overview of the semiconductor machining applications of this technique and relates the different applications to alternative techniques and the different functions of the water jet. The water jet cools the sample when the laser is not emitting, it expels the melt very efficiently, and it avoids that the few generated particles can attach to the wafer surface. The strengths of Laser Microjet® machining are free shape cutting and cutting of thin wafers. In free shape cutting the system leads to much better results in terms of fracture strength and process simplicity than the classical laser cutting methods. In thin wafer cutting astonishing cutting speeds are obtained at very good cut quality (200 mm/s in 50 micron thick wafers). Due to the free shape cutting possibilities drilling and slotting with aspect ratios of up to 5 is also possible resulting in the same edge quality as standard cutting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call