Abstract

Irradiation of the kinetochore region of PtK2 chromosomes by laser light of 532 nm was used to study the function of the kinetochore region in chromosome movement and to create an artificial micronuclei in cells. When the sister kinetochores of a chromosome were irradiated at prometaphase, the affected chromosome detached from the spindle and exhibited no further directed movements for the duration of mitosis. The chromatids of the chromosome remained attached to one another until anaphase, at which point they separated. No poleward movement of the chromatids was observed, and at telophase they passively moved to one of the daughter cells and were enclosed in a micronucleus. The daughter cell containing the micronucleus was then isolated by micromanipulation and followed through subsequent mitoses. At the next mitosis, two chromosomes, each with two chromatids, condensed in the micronucleus. These chromosomes did not attach to the spindle and showed chromatid separation, but no poleward movements at anaphase. They were again enclosed in micronuclei at telophase. The third generation mitosis was similar to the second. Occasionally, both the irradiation-produced and naturally occurring micronuclei exhibited no chromosome condensation at mitosis. Feulgen-stained monolayers of PtK2 cells with naturally occurring micronuclei showed that some micronuclei stain positive for DNA and others do not. This finding raises questions about the fate of chromosomes in a micronucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call