Abstract

We have developed a novel approach for layer-by-layer growth of tissue-engineered materials using a direct writing process known as matrix assisted pulsed laser evaporation direct write (MAPLE DW). Unlike conventional cell-seeding methods, this technique provides the possibility for cell-material integration prior to artificial tissue fabrication. This process also provides greater flexibility in selection and processing of scaffold materials. In addition, MAPLE DW offers rapid computer-controlled deposition of mesoscopic voxels at high spatial resolutions. We have examined MAPLE DW processing of zirconia and hydroxyapatite scaffold materials that can provide a medical device with nearly inert and bioactive implant-tissue interfaces, respectively. We have also demonstrated codeposition of hydroxyapatite, MG 63 osteoblast-like cells, and extracellular matrix using MAPLE DW. We have shown that osteoblast-like cells remain viable and retain the capacity for proliferation when codeposited with bioceramic scaffold materials. Our results on MG 63-hydroxyapatite composites can be extended to develop other integrated cell-scaffold structures for medical and dental applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.