Abstract

Direct laser surface micro/nanopatterning by using Contact Particle Lens Array (CPLA) has been widely utilized. The method involves laser scanning of a monolayer of transparent particles arranged on the substrate to be patterned. Despite the different techniques available for CPLA deposition; the particles monolayer can only be formed on hydrophilic surfaces, which restrict the range of substrates that could be patterned by this method. In this study, a technique for patterning of hydrophobic surfaces by using CPLA has been proposed. In the proposed technique, monolayer of CPLA is formed on a hydrophilic substrate and then transported to a hydrophobic substrate by using a flexible sticky plastic. The transported CPLA is then scanned by a laser for patterning the hydrophobic substrate. The plastic pre-selected for this work was transparent to the laser. Experimental investigations were carried out to generate bumps and bowl shaped patterns using transported particles. Features smaller than the diffraction limit have been generated. The optical near field and associated temperatures around the particles were numerically simulated with a coupled electromagnetic and thermal modelling technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call