Abstract

The laser energy per unit surface, necessary to trigger material removal, decreases with the pulse shortening, becoming pulse-time independent in the sub-picosecond range. These pulses are shorter than the electron-to-ion energy transfer time and electronic heat conduction time, minimising the energy losses. Electrons receiving an energy larger than the threshold drag the ions off the surface in the mode of electrostatic ablation. We show that a pulse shorter than the ion period (Shorter-the-Limit (StL)) ejects conduction electrons with an energy larger than the work function (from a metal), leaving the bare ions immobile in a few atomic layers. Electron emission is followed by the bare ion's explosion, ablation, and THz radiation from the expanding plasma. We compare this phenomenon to the classic photo effect and nanocluster Coulomb explosions, and show differences and consider possibilities for detecting new modes of ablation experimentally via emitted THz radiation. We also consider the applications of high-precision nano-machining with this low intensity irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.