Abstract

Tensile and dilatometric specimens were obtained with longitudinal axis parallel to the building direction. A first set of samples has been directly aged in the as- built state (AB) while a second batch underwent solubilization annealing (SA) at 540°C for 60min just before artificial ageing (AA) at 160°C for 8h. Solubilization caused the precipitation of Si particles, suppressed by the rapid solidification during SLM. Moreover, it caused partial recrystallization leading to a coarser microstructure. The ageing response resulted very different in the two cases, involving a higher starting hardness for the as-built material, showing a markedly higher hardness during the whole process. In the as built (AB) material, isochronal ageing experiments carried out by differential scanning calorimetry showed the precipitation of Mg2Si particles beneath Si, while the same transformations were much less intense in the solubilized sample, due to the lower Si supersaturation. The ageing process raised the yield strength of about 20% compared to the AB material, slightly reducing the fracture elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.