Abstract
Recent studies have indicated that chondrocyte viability decreases with prolonged or repeated laser irradiation. To optimize laser-mediated cartilage reshaping, the heating process must be finely controlled. In this study, we use high-power Nd:YAG laser irradiation (lambda = 1.32 microm) combined with cryogen spray cooling (CSC) in an attempt to reshape porcine septal cartilage while enhancing chondrocyte viability. Chondrocyte viability was determined after high-power (50 W/cm2) Nd:YAG-mediated cartilage reshaping with and without cryogen spray cooling (CSC) and correlated with dynamic measurements of tissue optical and thermal properties. After 1.5 to 2.0 seconds of laser exposure, characteristic changes in diffuse reflectance (indicating the onset of accelerated stress relaxation) was observed in both laser only and laser with CSC specimens. After 2 seconds of laser exposure, specimens in both groups retained the curved shape for up to 14 days. After one laser exposure, chondrocyte viability was 94.35 +/- 6.1% with CSC and 68.77 +/- 20.1% (P < 0.05) without CSC. After two laser exposures, a similar trend was observed with CSC (70.18 +/- 16.44%) opposed to without CSC (28 +/- 45%; P < 0.05). CSC during high-power laser irradiation allows rapid heating while minimizing extreme front surface temperature elevations and axial thermal gradients. Laser irradiation with CSC can be used to effectively reshape cartilage tissue with the additional advantage of increasing chondrocyte viability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.