Abstract

The laser light propagation inside the conical target had been studied by three-dimensional particle-in-cell simulations. It is found that the laser light is optically guided inside the conical target and focused at the tip of the cone. The intensity increases up to several tens of times in a several micron focal spot. It is the convergence of hot electrons to the head of the cone that is observed as a consequence of the surface electron flow guided by self-generated quasistatic magnetic fields and electrostatic sheath fields. As a result, the hot electron density at the tip is locally ten times greater than the case of using a normal flat foil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.